biogás

Effect of the turbulence intensity on knocking tendency in a SI engine with high compression ratio using biogas and blends with natural gas, propane and hydrogen

This research presents the test results carried out in a diesel engine converted to spark ignition (SI) using gaseous fuels, applying a geometry change of the pistons combustion chamber (GCPCC) to increase the turbulence intensity during the combustion process; with similar compression ratio (CR) of the original diesel engine; the increase in turbulence intensity was planned to rise turbulent flame speed of biogas, to compensate its low laminar flame speed.

Effect of equivalence ratio on knocking tendency in spark ignition engines fueled with fuel blends of biogas, natural gas, propane and hydrogen

This research evaluates the effect of the equivalence ratio on knocking tendency in two Spark Ignition (SI) engines fueled with gaseous fuels. A Lister Petter TR2 Diesel engine(TR2) converted to SI was used to evaluate the equivalence ratio effect when the engine was fueled with fuel blends of biogas, natural gas, propane, and hydrogen. A Cooperative Fuel Research (CFR) engine was used to study the effect of equivalence ratio on the Critical Compression Ratio (CCR) which is a metric to evaluate the knocking tendency of gaseous fuels.

Surface stabilized combustion technology: an experimental evaluation of the extent of its fuel-flexibility and pollutant emissions using low and high calorific value fuels

Surface-stabilized combustion (SSC) is a fuel-flexible technology that extends the stability limits of lean premixed systems, while achieving ultra-low emissions of NOx, CO and UHC (unburned hydrocarbons). To evaluate these attributes, the present study quantifies (1) operability characteristics i.e., lean blowoff limit and flashback behavior and (2) pollutant emissions (CO, N2O, NH3, NO and NO2) of a commercial SSC burner when operating at a fixed fire rate on a wide range of fuel compositions.

Interactive control of combustion stability and operating limits in a biogas-fueled spark ignition engine with high compression ratio

The use of high compression ratios on spark ignition engines enables the increase of thermal efficiency, but also contributes to the reduction of high load limit because of the higher auto-ignition tendency in the end-gas. Gaseous fuels provide a good option to expand the high load limits because of their high octane ratings, mostly in small engines. Biogas is a renewable fuel, mainly composed by CH4 and CO2 that exhibits high auto-ignition temperature and slow laminar flame speed.

Numerical Analysis of Biogas Composition Effects on Combustion Parameters and Emissions in Biogas Fueled HCCI Engines for Power Generation

This study investigates the effects of biogas composition on combustion stability for a purely biogas fueled homogeneous charge compression ignition (HCCI) engine. Biogas is one of the most promising renewable fuels for combined heat and power systems driven by internal combustion engines. However, the high content of CO2 in biogas composition leads to low thermal efficiencies in spark ignited and dual fuel compression ignited engines.

Effect of biogas enriched with hydrogen on the operation and performance of a diesel biogaqs dual engine

The effect of hydrogen enrichment was tested for a diesel-biogas dual fuel engine. The operation and performance characteristics, such as thermal efficiency, pollutant emissions and combustion parameters were determined. Experiments have been carried with a stationary compression ignition (CI) engine coupled with a generator in dual mode using a typical biogas composition of 60% vol. CH4 and 40% vol. CO2. For every load engine evaluated, the hydrogen concentration was varied from 5 to 20% H2 v/v.

Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine

The effect of oxygen enriched air was tested for a diesel-biogas dual fuel engine. The operation and performance characteristics, such as thermal efficiency, pollutant emissions and combustion parameters were determined. Experiments have been carried out with a stationary compression ignition (CI) engine coupled with a generator in dual mode using a typical biogas composition of 60 vol. %CH4 and 40% vol. %CO2. For every engine load evaluated, the oxygen concentration in the intake air engine was varied from 21% to 27% O2 v/v.

Experimental evaluation of strategies to increase the operating range of a biogas-fueled HCCI engine for power generation

In this research oxygen enrichment, gasoline pilot port injection, and delayed time of 50% cumulative heat release (CA50) are evaluated to expand the range for stable and safe combustion of a lean-burning biogas-fueled HCCI engine. A 4-cylinder 1.9 L Volkswagen TDI engine was modified to run in HCCI mode at 1800 rpm, and boost pressures and charge heating are used to promote autoignition of the biogas-in-air mixture at desired combustion timings. A typical biogas composition of 60% CH4 and 40% CO2 in a volumetric basis was simulated by controlling the CH4 and CO2 flow rates.

Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions

Combustion parameters and the main exhaust emissions from a biogas fueled HCCI engine are investigated in this study. The study was conducted on a 4-cylinder, 1.9L Volkswagen TDI Diesel engine, which was modified to run in HCCI mode with biogas by means of inlet charge temperature control, boosted intake pressure, and a sonic flow device upstream of the inlet manifold to control biogas composition and the equivalence ratio. For simulating typical power generation conditions, the engine was coupled to an AC motor generator operating at 1800 rpm.

Estudio comparativo entre las propiedades de combustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno

La búsqueda de alternativas energéticas de origen renovable y la disminución de gases de efecto invernadero provenientes de la descomposición de desechos orgánicos hacen del biogás una prometedora alternativa para la sustitución de combustibles fósiles y para la valorización energética de residuos orgánicos en zonas urbanas, rurales y agroindustriales. En el presente trabajo se realizó un análisis de sensibilidad de las propiedades de combustión del biogás con enriquecimiento de aire con oxígeno en un rango entre 22 y 35% O2.

Pages