Fuel flexibility

Surface stabilized combustion technology: an experimental evaluation of the extent of its fuel-flexibility and pollutant emissions using low and high calorific value fuels

Surface-stabilized combustion (SSC) is a fuel-flexible technology that extends the stability limits of lean premixed systems, while achieving ultra-low emissions of NOx, CO and UHC (unburned hydrocarbons). To evaluate these attributes, the present study quantifies (1) operability characteristics i.e., lean blowoff limit and flashback behavior and (2) pollutant emissions (CO, N2O, NH3, NO and NO2) of a commercial SSC burner when operating at a fixed fire rate on a wide range of fuel compositions.

Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment

This paper addresses the experimental and numerical modeling of NOx emissions and lean blow off (LBO) stability limits of natural gas and biogas fuels reactions stabilized with a low swirl burner (LSB). The paper presents the methodology to set up a chemical reactor network (CRN) based on experimental results and computational fluid dynamics (CFD) simulations. The CRN is a simplified representation of the fluid dynamics and energy balance of the reactive gases in the boiler environment.

Exploring Computational Methods for Predicting Pollutant Emissions and Stability Performance of Premixed Reactions Stabilized by a Low Swirl Injector

This article addresses the numerical modeling of NOx emissions and lean blowoff (LBO) limits of confined and pressurized turbulent premixed flames stabilized with a low swirl burner. The study also evaluates existing numerical methods that can be used to predict exhaust pollutant emissions and reaction instability close to the LBO limit. One of the strategies presented in the article consists of establishing a chemical reactor network (CRN), which is a simplified model of the fluid dynamics and energy balance of the system coupled with a detailed reaction mechanism.