Study of transient heating using an in situ combustion system

In this work, we evaluated the transient heating of a liquid using an in situ laboratory-scale combustion system, and the sensible and latent heat transfer efficiencies were determined through experimental evaluation of the heating of water volume and psychrometric parameters of combustion gases. Tests were performed using natural gas with a composition of 97% (by volume) of methane, and the liquid level was varied to study the effects on efficiency. Experimentation was carried out at atmospheric conditions of 298 K and 850 mbar with combustion gases at 446°C and equivalence ratio φ=0.83.

Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen

Methane number (MN) and the critical compression ratio (CCR) measurements for twelve blends of biogas with methane or propane and hydrogen additions were taken in a Cooperative Fuel Research (CFR) F2 model engine according to the standard. In addition, CHEMKIN simulations of MN and the CCR were performed on these blends at similar conditions to the CFR F2 engine operation. Eight chemical kinetics mechanisms were used; it was concluded that the best mechanism to simulate the CCR is USCII, and the best mechanism to simulate MN is San Diego.

Direct emissions of nitrous oxide from combustion of gaseous fuels

International Journal of Hydrogen Energy

After molecular nitrogen, nitrous oxide (N2O) is the second most abundant nitrogen compound in the atmosphere and its concentration is rising at rate of 0.26% yr−1 (0.7 ppb yr−1). In the troposphere N2O is a relatively stable compound, however it is reactive in the stratosphere, where it is destroyed by photolysis with ultraviolet radiation. While photolysis in the stratosphere removes this potent greenhouse gas from the atmosphere, subsequent reactions also destroy protective ozone.

Estudio teórico, numérico y experimental de la intercambiabilidad del gas naturel en Antioquia

En el marco de Momentos Académicos Francisco Javier Cadavid Sierra el grupo GASURE hace una invitación a la presentación divulgativa de la tesis maestria ''Estudio teórico, numérico y experimental de la intercambiabilidad del gas naturel en Antioquia'', realizada por el Ingeniero Edwin Uribe del Instituto Técnológico Metropolitano (ITM), cuyos tutores fueron 

Seminario sobre técnicas de medición, diagnóstico y manejo de patentes

Momentos Académicos Francisco Cadavid Sierra, es un espacio en memoria y honor al profesor Francisco Cadavid Sierra(q.e.p.d), en el cual se realiza las presentación de tópicos académicos de la agenda de investigación del grupo y de sus interacciones con otras disciplinas, se presentan los seminarios y avances de las tesis (pregrado y postgrado), los avances y resultados de los proyectos de investigación y la realización de curso de actualización de corta duración.

Criterios para el procesamiento y evaluación de datos experimentales para un motor de encendido provocado de alta relación de compresión

Este artículo presenta los resultados de la evaluación de estrategias de análisis desarrolladas para los motores de combustión convencionales aplicadas al estudio de un motor de encendido provocado de alta relación de compresión. El motor objeto de análisis ha sido obtenido a partir de la transformación a modo encendido provocado de un motor Diesel estacionario.

Numerical and experimental analysis of the effect of adding water electrolysis products on the laminar burning velocity and stability of lean premixed methane/air flames at sub-atmospheric pressures

This paper presents a study of CH4/Air/H2/O2 premixed laminar flames using a ratio of H2/O2 equal to 2/1. This gas mixture represents the products of the electrolysis of water. To date, only numerical analysis has been carried out on these kinds of blends and using H2/O2 percentages of only up to 10% by volume. Furthermore, there have been no reports of experimental analysis or possible flame instabilities associated with the enrichment of the mix with H2/O2.